

PROPRIETARY NOTE THIS SPECIFICATION IS THE PROPERTY OF BOE AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE AND MUST BE RETURNED TO BOE UPON ITS REQUEST

TITLE : NT156WHM-N44

Product Specification

Rev. P0

BOE Optoelectronics Technology Co., Ltd

SPEC. NUMBER	PRODUCT GROUP	Rev.	ISSUE DATE	PAGE
	TFT-LCD	PO	2018.01.04	1 OF 33
B2017-0011-0 (1/3)				$A4(210 \times 297)$

 $D_2017-Q011-O(1/3)$

 $A4(210 \land 297)$

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

REVISION HISTORY

()Preliminary Specification

 $(\sqrt{})$ Final Specification

Revision No.	Page	Description of Changes	Date	Prepared
PO	/	Final Release	2018.01.04	Ma Hebing

	REV	IEWED	
Designer Manager			
Xu Zł	nuo(Array)	Wang Rui	
Tan	Su(Cell)	Hu Jingyong	
Wei Xio	ongzhou(CF)	Li Min	
Wu I	Huan(EE)	Lu Xu	
Yu Pingjia(MO) Gao Liang		Gao Liang	
Zhang Peng(QE) Huang Yuan			
Chen Gang(PI) Wang Zhihui			
	APPI	ROVED	
	Ma He	bing(PM)	
SPEC. NUMBER	SPEC. TITLE		PAGE
	NT156WHM-N44	4 Product Specification Rev. P0	2 OF 33
2017-Q011-O (2/3)	•	·	A4(210 X 2

Customer Spec

Rev. P0

Contents

No.	Items	Page
1.0	General Description	4
2.0	Absolute Maximum Ratings	6
3.0	Electrical Specifications	7
4.0	Optical Specifications	10
5.0	Interface Connection	15
6.0	Signal Timing Specification	19
7.0	Input Signals, Display Colors & Gray Scale of Colors	21
8.0	Power Sequence	22
9.0	Connector Description	23
10.0	Mechanical Characteristics	24
11.0	Reliability Test	25
12.0	Handling & Cautions	25
13.0	Label	26
14.0	Packing Information	28
15.0	Mechanical Outline Dimension	29
16.0	EDID Table	31

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	3 OF 33
B2017-Q011-O (3/3)		A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

1.0 GENERAL DESCRIPTION

1.1 Introduction

NT156WHM-N44 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 15.6 inch diagonally measured active area with HD resolutions (1366 horizontal by 768 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 262k(6bit) colors and color gamut 45%. The TFT-LCD panel used for this module is a low reflection and higher color type. Therefore, this module is suitable for Notebook PC. The LED driver for back-light driving is built in this model.

All input signals are eDP1.2 interface compatible.

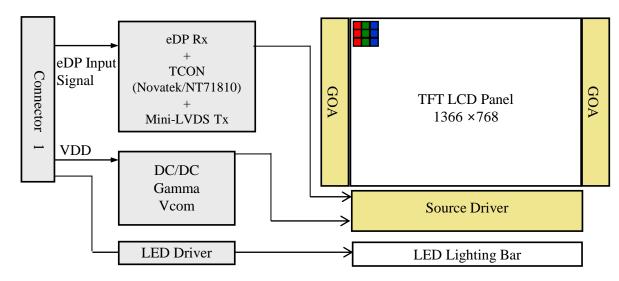


Figure 1. Drive Architecture

1.2 Features

- 1 lane eDP interface with 2.7Gbps link rates
- Thin and light weight
- 262k(6bit) color depth, color gamut 45%
- Single LED lighting bar (Bottom side/Horizontal Direction)
- Data enable signal mode
- Side mounting frame
- Green product (RoHS & Halogen free product)
- On board LED driving circuit
- Low driving voltage and low power consumption
- On board EDID chip

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	4 OF 33
B2017-Q011-O (3/3)	· · · · · · · · · · · · · · · · · · ·	A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

1.3 Application

• Notebook PC (Wide type)

1.4 General Specification

The followings are general specifications at the model NT156WHM-N44. (listed in Table 1)

Parameter	Specification	Unit	Remarks
Active area	344.232 (H) x 193.536(V)	mm	
Number of pixels	1366 (H) ×768 (V)	pixels	
Pixel pitch	252(H) ×252(V)	um	
Pixel arrangement	RGB Vertical stripe		
Display colors	262k(6bit)		
Color gamut	45%		
Display mode	Normally white		
Dimensional outline	350.96(H)*216.75(V) (W/PCB)*3.2(Max)	mm	
Weight	360(Max)	g	
Surface treatment	AG		
Surface hardness	3Н		
Back-light	Bottom edge side, 1-LED lighting bar type		Note 1
	P _D : 0.77	W	@Mosaic
Power consumption	P_{BL} : 2.52(Max)	W	
	P _{Total} : 3.29	W	@Mosaic

ations>

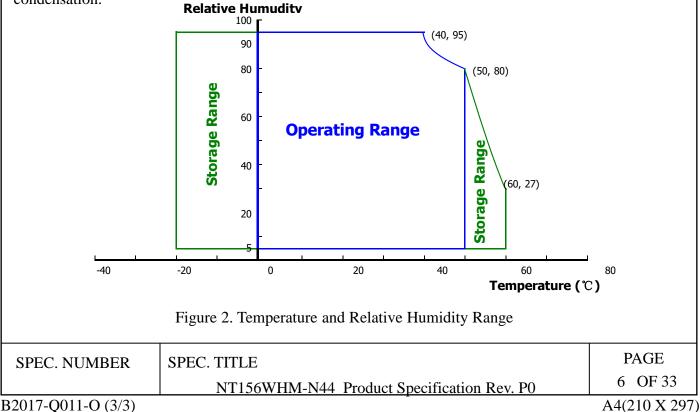
SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	5 OF 33
B2017-Q011-O (3/3)	· · · · · · · · · · · · · · · · · · ·	A4(210 X 297)

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings>

Ta=25+/-2°C


Parameter	Symbol	Min.	Max.	Unit	Remarks	
Power Supply Voltage	V _{DD}	-0.3	4.0	V	Note 1	
Logic Supply Voltage	V _{IN}	V _{ss} -0.3	V _{DD} +0.3	V	Note 1	
Operating Temperature	T _{OP}	0	+50	°C	N-4- 2	
Storage Temperature	T _{ST}	-20	+60	°C	Note 2	

Notes :

1. Permanent damage to the device may occur if maximum values are exceeded functional operation should be restricted to the condition described under normal operating conditions.

2. Temperature and relative humidity range are shown in the figure below.

95 % RH Max. (40 °C \ge Ta) Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

Customer Spec

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Table 3. Electrical Specifications >	Ta=25+/-2°C
--	-------------

Parameter	Min.	Тур.	Max.	Unit	Remarks	
Power Supply Voltage	V _{DD}	3.0	3.3	3.6	V	Note 1
Permissible Input Ripple Voltage	V _{RF}	-	-	100	mV	@ $V_{DD} = 3.3 V$
Power Supply Current	I _{DD}	-	233	339	mA	Note 1
Power Supply Inrush Current	Inrush	-	-	2.0	А	Note3
	P _D	-	0.77	1.12	W	Note 1
Power Consumption	P _{BL}	-		2.52	W	Note 2
	P _{total}	-	3.29	3.64	W	Note 1

Notes :

1. The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for 3.3V at 25 °C.

a) Typ : Mosaic pattern 8*8

b) Max : R/G/B patterns

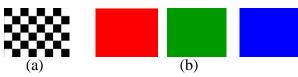


Figure 3. Power Measure Patterns

- 2. Calculated value for reference (VLED × ILED)
- 3. Measure condition (Figure 4)

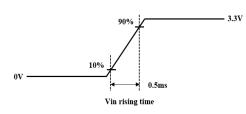


Figure 4. Inrush Measure Condition

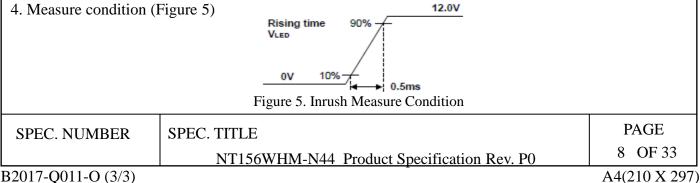
SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	7 OF 33
B2017-Q011-Q (3/3)	*	A4(210 X 297)

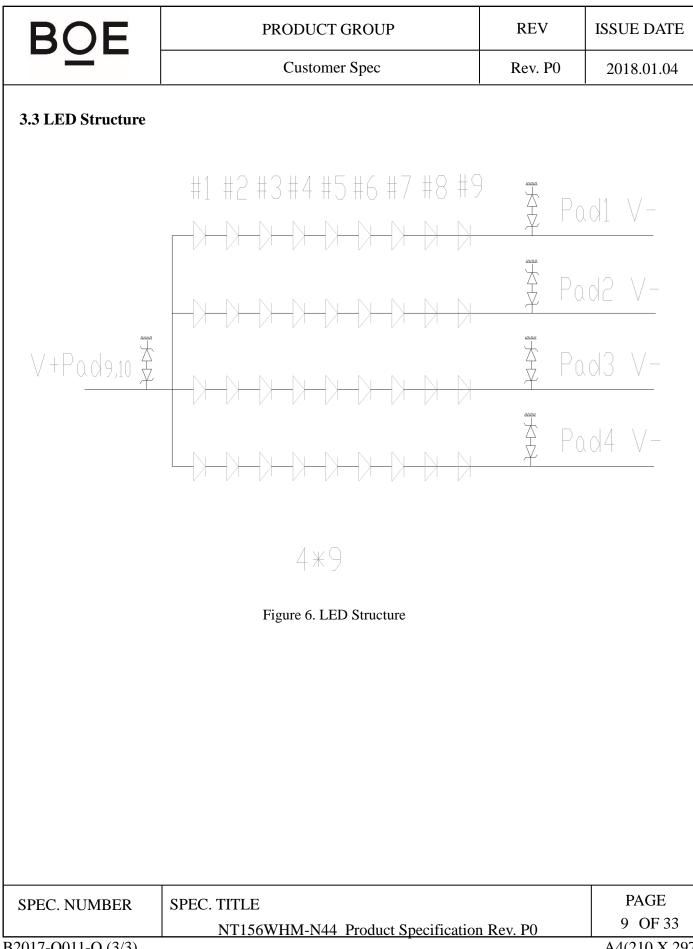
BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

3.2 Backlight Unit

< Table 4. LED Driving Guideline Specifications > Ta=25+/-2°C

Parameter Min. Typ. Max. Unit Remarks V_F LED Forward Voltage V 3.0 _ _ LED Forward Current I_{F} 17.3 mA _ LED Power Consumption 2.52 W P_{LED} _ _ Note 1 N/A LED Life-Time Hour IF = 20mA15,000 Power Supply Voltage for LED V_{LED} V 5 12 21 Driver Power Supply Voltage for LED Iled 2.0Note 4 Α _ Driver Inrush inrush Backlight On 2.0 5.0 V _ **EN** Control Level Backlight Off 0 0.6 V High Level 2.0 5.0V **PWM Control** Level Low Level V 0 0.6 **PWM Control Frequency** 200 10,000 Hz F_{PWM} _ **Duty Ratio** 1 100 % Note 3 _


Notes :


1. Power supply voltage12V for LED driver.

Calculator value for reference IF \times VF \times 36 /driver efficiency = PLED

2. The LED life-time define as the estimated time to 50% degradation of initial luminous.

- 3. 1% duty cycle is achievable with a dimming frequency less than 1KHz.
- 4. Measure condition (Figure 5)

B2017-Q011-O (3/3)

A4(210 X 297)

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of luminance meter system (PR730&PR810) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0°. We refer to $\theta \emptyset = 0$ (= $\theta 3$) as the 3 o'clock direction (the "right"), $\theta \emptyset = 90$ (= $\theta 12$) as the 12 o'clock direction ("upward"), $\theta \emptyset = 180$ (= $\theta 9$) as the 9 o'clock direction ("left") and $\theta \emptyset = 270$ (= $\theta 6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement. VDD shall be 3.3+/- 0.3V at 25°C. Optimum viewing angle direction is 6 'clock.

4.2 Optical Specifications

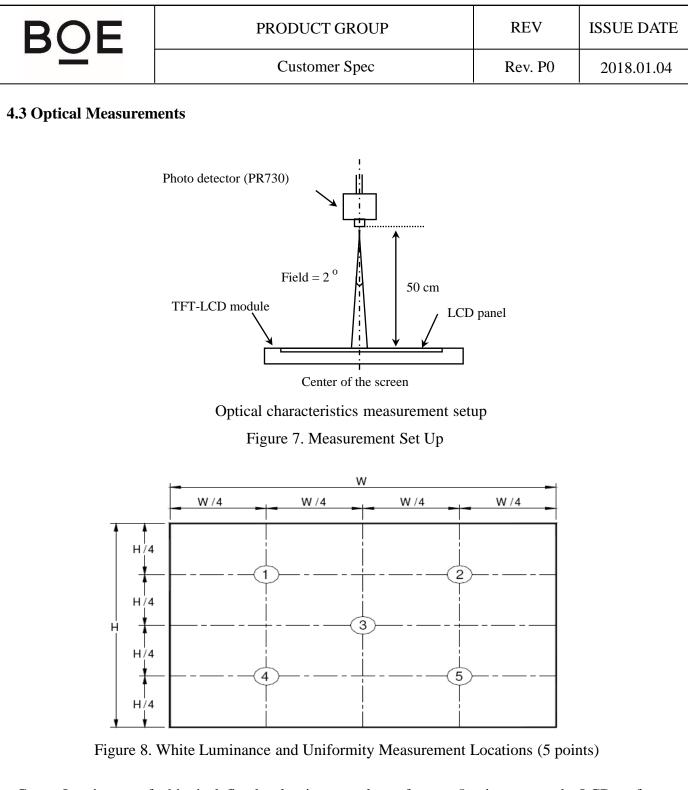
Parame	eter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Haring		Θ_3		-	45	-	Deg.	
Viewing Angle	Horizo	ontai	Θ_9	CR > 10	-	45	-	Deg.	- Note I
Range	Vertic	aa1	Θ_{12}	CK > 10	-	20	-	Deg.	
	vertic	cai	Θ_6		-	40	-	Deg.	
Luminance Cor	ntrast Ra	ntio	CR	$\Theta = 0^{\circ}$	-	400	-		Note 2
Luminance of White	5 Poir	nts	Y _w	$\Theta = 0^{\circ}$	187	220	-	cd/m ²	Note 3
White	5 Poir	nts	$\Delta Y5$	$\Theta = 0^{\circ}$ ILED = 17.3mA	80	-	-		
Luminance Uniformity	13 Poi	ints	ΔΥ13		65	-	-		Note 4
White Chase			W _x	$\Theta = 0^{\circ}$	0.283	0.313	0.343		Note 5
White Chron	maticity		W _v	$\Theta = 0^{\circ}$	0.299	0.329	0.359		Note 5
	Red	A	R _x			0.589			
		u	R _y				0.343		
Reproduction	Green	an	G _x	$\Theta = 0^{\circ}$	0.02	0.330	.0.02		
of Color	Ulte	-11	G _v	$\Theta = 0^{-1}$	-0.03	0.570 +0.0	+0.03		
	Blue		B _x			0.157			
	Blue	e	B_{v}			0.137			
Color Ga	amut				-	45	-	%	
Response (Rising + F			T _{RT}	$Ta=25^{\circ}C$ $\Theta=0^{\circ}$	-	12	-	ms	Note 6
Cross T	alk		СТ	$\Theta = 0^{\circ}$	-	-	2.0	%	Note 7
SPEC. NUMBE	R S	SPEC	C. TITLE						PAGE
			NT156V	VHM-N44 Proc	duct Spec	ification l	Rev. P0		10 OF 33

<Table 5. Optical Specifications>

B2017-Q011-O (3/3)

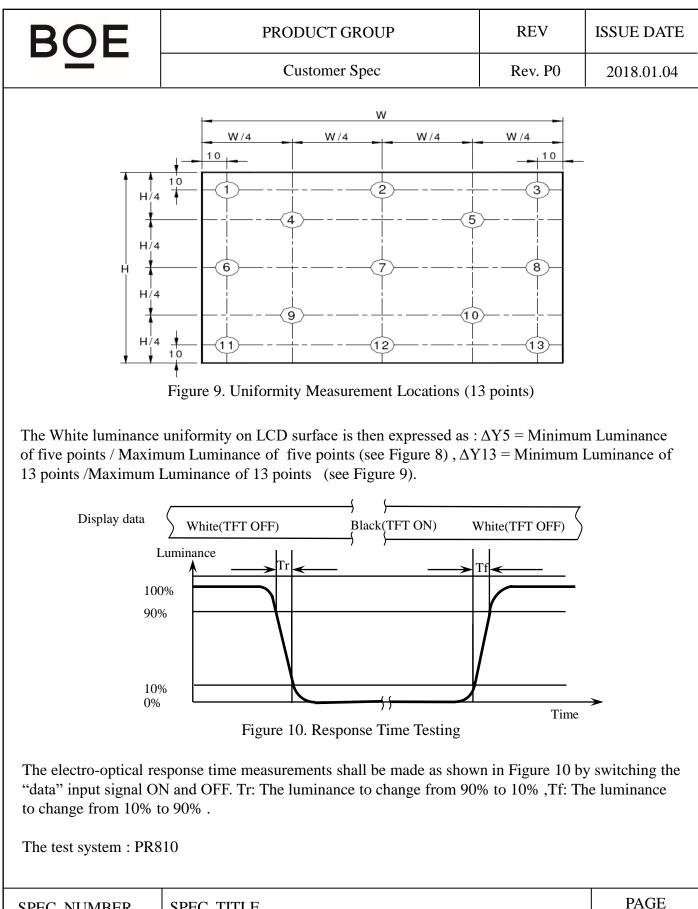
A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

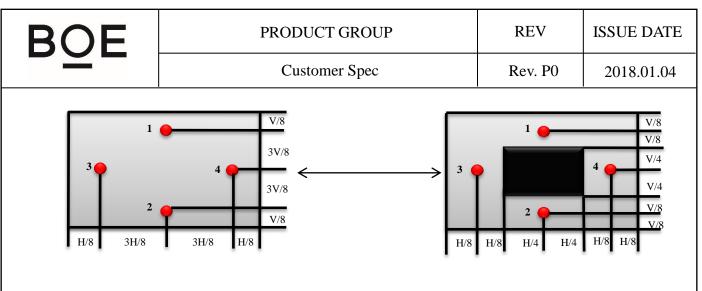

Notes :

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see Figure 7).
- 2. Contrast measurements shall be made at viewing angle of $\Theta = 0$ and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state . (see Figure 7) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster Luminance when displaying a black raster


- 3. Center Luminance of white is defined as luminance values of 5 point average across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 8 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : $\Delta Y =$ Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points.(see Figure 8 and Figure 9).
- 5. The color chromaticity coordinates specified in Table 5 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as Figure 10 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is T_f, and 90% to 10% is T_r.
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See Figure 11).

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	11 OF 33
B2017-O011-O (3/3)	-	A4(210 X 297)



Center Luminance of white is defined as luminance values of center 5 points across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 7 for a total of the measurements per display.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	12 OF 33
B2017-Q011-O (3/3)	· · · · · · · · · · · · · · · · · · ·	A4(210 X 297)

SPEC. NUMBERSPEC. TITLEPAGENT156WHM-N44Product Specification Rev. P013 OF 33B2017-Q011-O (3/3)A4(210 X 297)

Cross Talk (%) = $\left| \frac{Y_B - Y_A}{Y_A} \right| \times 100$

Figure 11. Cross Talk Modulation Test Description

Where:

 Y_A = Initial luminance of measured area (cd/m²)

 $Y_B =$ Subsequent luminance of measured area (cd/m²)

The location 1/2/3/4 measured will be exactly the same in both patterns. The test background gray is from L64 to L192. Take the largest data as the result.

Cross Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark.(Refer to Figure 11) The test system: PR730

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	14 OF 33
B2017-Q011-O (3/3)	*	A4(210 X 297)

Customer Spec

REV

5.0 INTERFACE CONNECTION

5.1 Electrical Interface Connection

The electronics interface connector is STM MSAK24025P30 or Compatible. The connector interface pin assignments are listed in Table 6.

<Table 6. Pin Assignments for the Interface Connector>

Terminal	Symbol	Functions
Pin No.	Symbol	Description
1	CABC_ENABLE	No Connection
2	H_GND	Ground
3	NC	No Connection
4	NC	No Connection
5	H_GND	Ground
6	LANE0_N	eDP RX Channel 0 Negative
7	LANE0_P	eDP RX Channel 0 Positive
8	H_GND	Ground
9	AUX_CH_P	eDP AUX CH Positive
10	AUX_CH_N	eDP AUX CH Negative
11	H_GND	Ground
12	LCD_VCC	Power Supply, 3.3V (typ.)
13	LCD_VCC	Power Supply, 3.3V (typ.)
14	BIST	Panel Self Test Enable
15	H_GND	Ground
16	H_GND	Ground
17	HPD	Hot Plug Detect Output
18	BL_GND	LED Ground
19	BL_GND	LED Ground
20	BL_GND	LED Ground
21	BL_GND	LED Ground
22	BL_ENABLE	LED Enable Pin(+3.3V Input)
23	BL_PWM	System PWM Signal Input
24	NC	No Connection
25	COLOR_ENABLE	No Connection
26	BL_POWER	LED Power Supply 5V-21V
27	BL_POWER	LED Power Supply 5V-21V
28	BL_POWER	LED Power Supply 5V-21V
29	BL_POWER	LED Power Supply 5V-21V
30	NC	No Connection
C. NUMBER	SPEC. TITLE	PAG

SPEC. NUMBERSPEC. TITLEPAGENT156WHM-N44Product Specification Rev. P015OF 33B2017-Q011-O (3/3)A4(210 X 297)

BOE		PRODUCT GROUP		REV	ISSUE DATE			
		Customer Spec		Rev. P0	2018.01.04			
5.2 eDP Interface								
	PC Side	eDP Interface	:	TFT-LCD Side				
Video /Grap Processing		Main Link AUX Channe HPD	eDP to mi-LVDS Parallel		R0~R5 G0~G5 B0~B5 Hsync Vsync DE CLK			

Figure 12. eDP Interface Architecture

Note:

Transmitter : Parade DP501 or equivalent. Transmitter is not contained in module.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	16 OF 33
B2017-0011-0 (3/3)	· · · · · · · · · · · · · · · · · · ·	A4(210 X 297

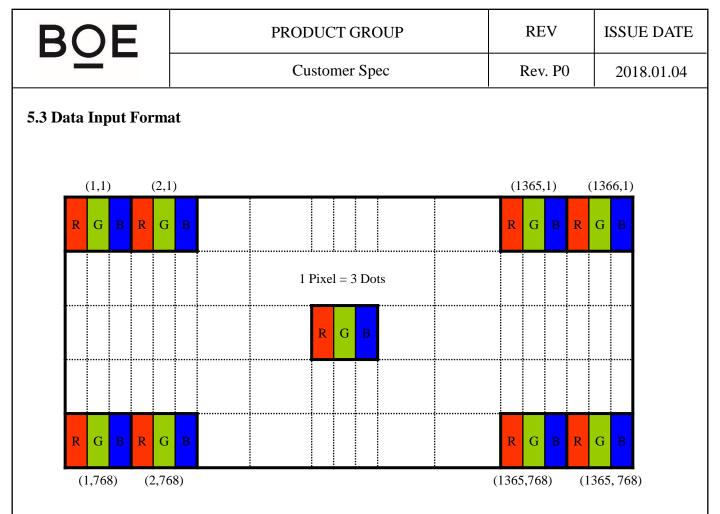


Figure 13. Display Position of Input Data (V-H)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	17 OF 33
B2017-Q011-O (3/3)		A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE		
	Customer Spec	Rev. P0	2018.01.04		
5.4 Back-light & LCM Interface Connection					

BLU Interface Connector: STM MSK24022P10 or Compatible.

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	LED	LED cathode connection	6	NC	No Connection
2	LED	LED cathode connection	7	GND	GND
3	LED	LED cathode connection	8	NC	No Connection
4	LED	LED cathode connection	9	Vout	LED anode connection
5	NC	No Connection	10	Vout	LED anode connection

<Table 7. Pin Assignments for the BLU Connector>

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	18 OF 33
B2017-0011-0 (3/3)	•	A4(210 X 297)

Rev. P0

6.0 SIGNAL TIMING SPECIFICATION

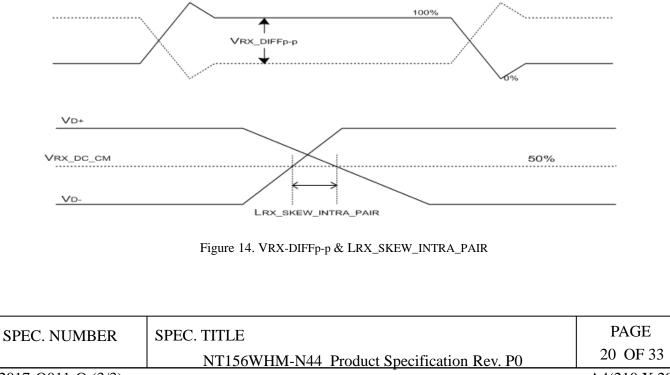
6.1 The NT156WHM-N44 Is Operated By The DE Only

Item		Symbols	Min	Тур	Max	Unit
Clock	Frequency	1/Tc	74.4	76.3	85.3	MHz
			780	798	840	lines
Frame Period		Tv	-	60	-	Hz
			-	16.67	-	ms
Vertical Display Period		Tvd	-	768	-	lines
One line Scanning Period		Th	1590	1592	1692	clocks
Horizon	tal Display Period	Thd	-	1366	-	clocks

< Table 8. Signal Timing Specification >

Note^{**}: This Module can support low frame refresh rate 60Hz & 40Hz.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	19 OF 33
B2017-Q011-O (3/3)		A4(210 X 297)


BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

6.2 eDP Rx Interface Timing Parameter

The specification of the eDP Rx interface timing parameter is shown in Table 9.

<Table 9. eDP Main-Link RX TP4 Package Pin Parameters>

Item	Symbol	Min	Тур	Max	Unit	Remark
Spread spectrum clock (Link clock down-spreading)	SSC	-	-	-	%	
Differential peak-to-peak input voltage at package pins	VRX-DIFFp-p	120	-	1200	mV	
Rx input DC common mode voltage	VRX_DC_CM	0	-	2.0	V	
Differential termination resistance	Rrx-diff	80	100	120	Ω	
Single-ended termination resistance	Rrx-se	40	-	60	Ω	
Rx short circuit current limit	IRX_SHORT	-	-	50	mA	
Intra-pair skew at Rx package pins (HBR) RX intra-pair skew tolerance at HBR	LRX_SKEW_ INTRA_PAIR	-	-	60	ps	

B2017-Q011-O (3/3)

A4(210 X 297)

Customer Spec

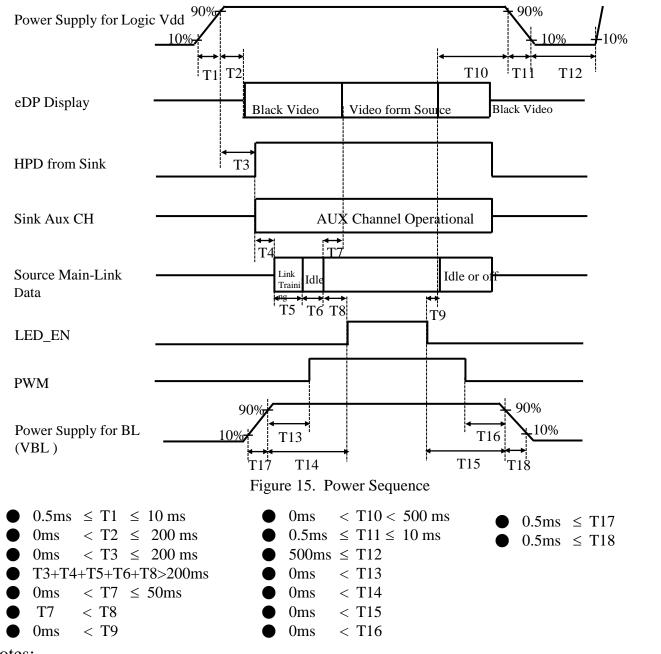
2018.01.04

7.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

<Table 10. Input Signal & Basic Display Colors & Gray Scale of Colors >

	Colors &		Data signal	
	Gray scale	R0 R1 R2 R3 R4 R5	G0 G1 G2 G3 G4 G5	B0 B1 B2 B3 B4 B5
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	Blue	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1
Basic	Green	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0
colors	Light Blue	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1
	Red	1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	Purple	1 1 1 1 1 1	0 0 0 0 0 0	1 1 1 1 1 1
	Yellow	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0
	White	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
		1 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	Darker	0 1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
Gray scale		Ť.	Î.	1 I
of Red		+	¥	
	Brighter	101111	0 0 0 0 0 0	0 0 0 0 0 0
		0 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	Red	1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
		0 0 0 0 0 0	100000	0 0 0 0 0 0
Orrestorela	Darker	0 0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 0 0
Gray scale		Ť	T I	Ť
of Green		+	*	*
	Brighter	0000000		
	Green	000000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000
	Black		0 0 0 0 0 0	
			0 0 0 0 0 0	
	Darker	0 0 0 0 0 0	0 0 0 0 0 0	
Gray scale				
of Blue		Ļ	↓	Ļ
	Brighter	0 0 0 0 0 0	0 0 0 0 0 0	101111
	∇	0 0 0 0 0 0	0 0 0 0 0 0	0 1 1 1 1 1
	Blue	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Gray	Δ	1 0 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0
scale	Darker	0 1 0 0 0 0	0 1 0 0 0 0	0 1 0 0 0 0
of	▲	1	<u>t</u>	†
White		↓	↓	↓
&	Brighter	101111	101111	101111
Black		0 1 1 1 1 1	0 1 1 1 1 1	0 1 1 1 1 1
	White	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1

NT156WHM-N44Product Specification Rev. P0B2017-Q011-O (3/3)


PAGE 21 OF 33

A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P0	2018.01.04

8.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below.

Notes:

When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
Do not keep the interface signal high impedance when power is on. Back Light must be turn on after power for logic and interface signal are valid.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	22 OF 33
B2017-Q011-O (3/3)	· · · · · · · · · · · · · · · · · · ·	A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE	
	Customer Spec	Rev. P0	2018.01.04	

9.0 Connector Description

Physical interface is described as for the connector on LCM. These connectors are capable of accommodating the following signals and will be following components.

9.1 TFT LCD Module

< Table 11. Sign	al Connector >
------------------	----------------

Connector Name /Description	For Signal Connector
Manufacturer	STM or Compatible
Type/ Part Number	MSAK24025P30 or Compatible
Mating Housing/ Part Number	I-PEX 20454-030T or Compatible

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	23 OF 33
B2017-0011-0 (3/3)	•	$A4(210 \times 297)$

Rev. P0

10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

Figure 20 shows mechanical outlines for the model NT156WHM-N44. Other parameters are shown in Table 12.

Parameter Specification			
Active Area	344.232 (H) x 193.536(V)	mm	
Number of pixels	1366 (H) X 768 (V) (1 pixel = $R + G + B$ dots)	pixels	
Pixel pitch	252 (H) × 252 (V)	um	
Pixel arrangement	RGB Vertical stripe		
Display colors	262K(6bit)		
Display mode	Normally white		
Dimensional outline	350.96(H)*216.75(V) (W/PCB)*3.2(Max)	mm	
Weight	360(Max)	g	

<Table 12. Dimensional Parameters>

10.2 Mounting

See Figure 20.

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an Anti-Glare coating to minimize reflection and a coating to reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 350lux.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	24 OF 33
B2017-O011-O (3/3)	*	A4(210 X 297)

BOE	PRODUCT GROUP	REV	ISSUE DATE	
	Customer Spec	Rev. P0	2018.01.04	

11.0 RELIABILITY TEST

The reliability test items and its conditions are shown in below.

<Table 13. Reliability Test>

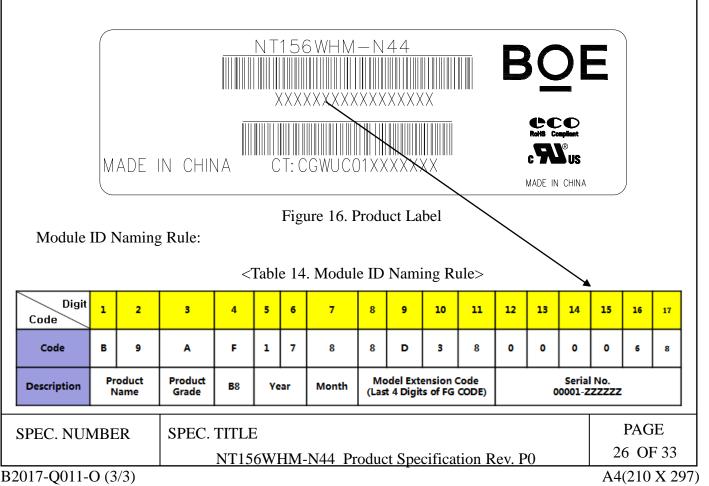
No	Test Items	Conditions
1	High temperature storage test	$Ta = 60^{\circ}C$, 60% RH, 240 hrs
2	Low temperature storage test	$Ta = -20^{\circ}C$, 240 hrs
3	High temperature & high humidity operation test	$Ta = 50^{\circ}C$, 80% RH, 240 hrs
4	High temperature operation test	$Ta = 50^{\circ}C$, 60% RH, 240 hrs
5	Low temperature operation test	Ta = 0°C, 240 hrs
6	Thermal shock	Ta = -20 °C \leftrightarrow 60 °C (0.5 hr), 60% ±3% RH, 100 cycle
7	Vibration test (non-operating)	Ta = 25° C, 60%RH, 1.5G, 10~500Hz, Half Sine X,Y,Z / Sweep rate : 1 hour
8	Shock test (non-operating)	Ta = 25°C , 60%RH, 220G, Half Sine Wave 2msec $\pm X, \pm Y, \pm Z$ Once for each direction
9	Electro-static discharge test (non-operating)	Air : 150 pF, 330 Ω , 15 KV Contact : 150 pF, 330 Ω , 8 KV Ta = 25°C , 60%RH,

12.0 HANDLING & CAUTIONS

(1) Cautions when taking out the module

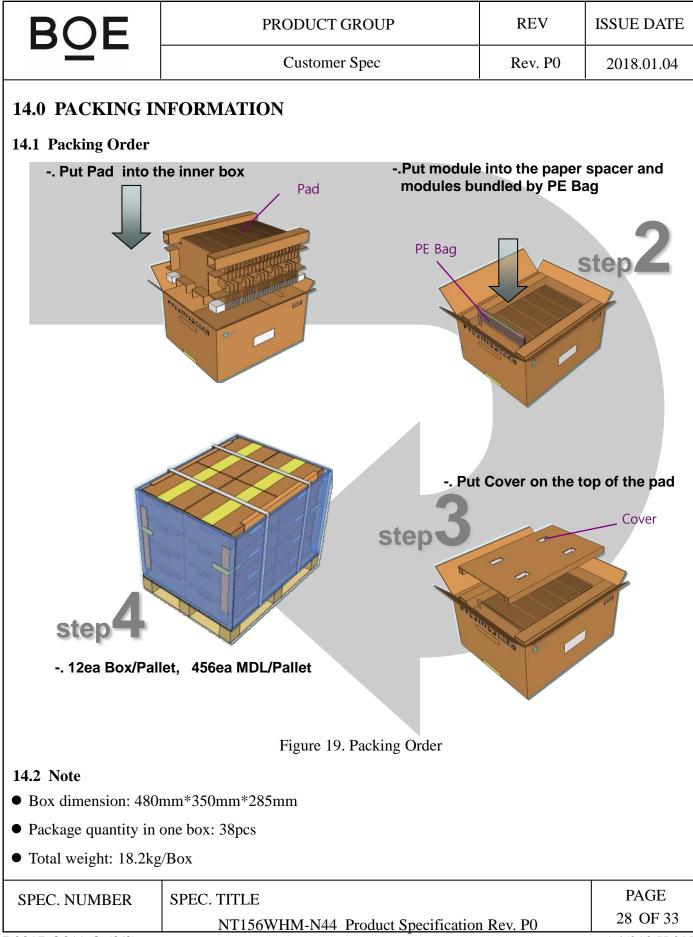
- Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
 - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - Do not pull the interface connector in or out while the LCD module is operating.
 - Put the module display side down on a flat horizontal plane.
 - Handle connectors and cables with care.
- (3) Cautions for the operation
 - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	25 OF 33
B2017-Q011-O (3/3)	· · · · · · · · · · · · · · · · · · ·	A4(210 X 297

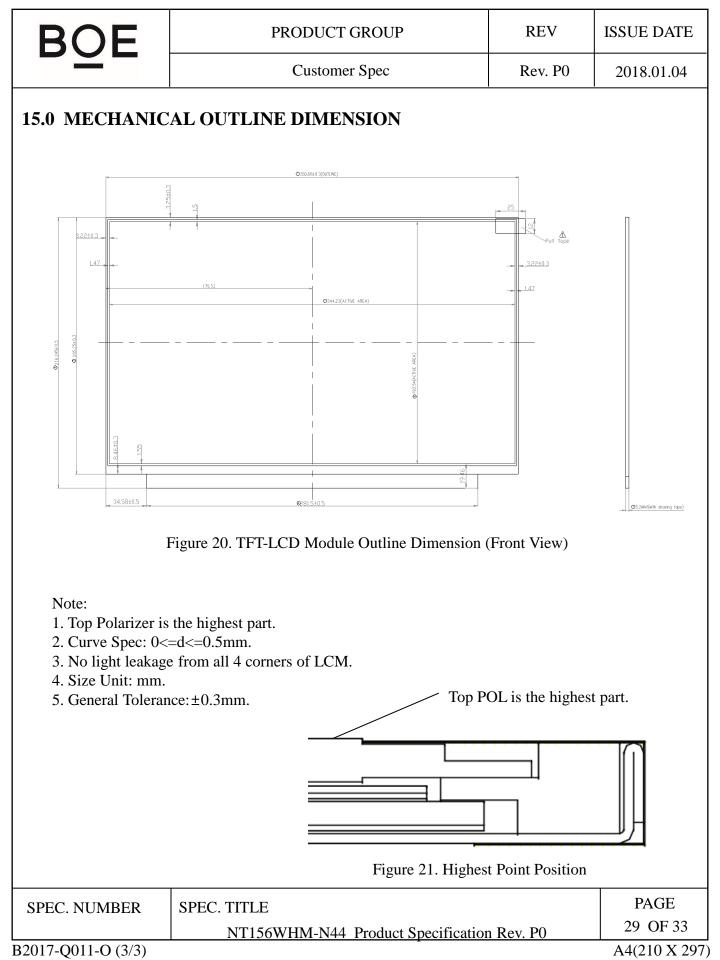

BOE	PRODUCT GROUP	REV	ISSUE DATE	
	Customer Spec	Rev. P0	2018.01.04	

(4) Cautions for the atmosphere

- Dew drop atmosphere should be avoided.
- Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
 - Do not disassemble and/or re-assemble LCD module.
 - Do not re-adjust variable resistor or switch etc.
 - When returning the module for repair or etc. Please pack the module not to be broken. We recommend to use the original shipping packages.


13.0 LABEL

(1) Product Label


BOE			PRODUCT GROUP						REV		I	ISSUE DATE		
			Customer Spec							ev. P0		2018.0)1.04	
(2) High voltage caution label														
4	HIGH VOLTAGE CAUTION RISK OF ELECTRIC SHOCK, DISCONNECT THE ELECTRIC POWER BEFORE SERVICING COLD CATHODE FLUORESCENT LAMP IN LCD PANEL CONTAINS A SMALL AMOUNT OF MERCURY, PLEASE FOLLOW LOCAL OR- DINANCES OR REGULATIONS FOR DISPOSAL													
				Figure	17. I	High	Voltage C	aution Lab	el					
(3) Box Label	I		BOE				G BOE OP IGY Co., L	TOELECT TD	RONI	cs				
			MODEL: XXX	XXXX—XXX		1		2'TY : XX	(2					
			SERIAL NO:	BOX ID	XXXX		3 c	DATE: XXXXX	xxxx (4 DCC	Đ				
			xxxxxxxxx (XXX	x @	 > xx	Ra <× ⑦	HS Complia	ant				
				F	igur	e 18	. Box Lab	el						
		Se 1. 3.	erial number FG-COI Box ID		-		-	. Produc						
		5. 6. 7.	FG-Cod	e After f	our	ateri	al number	(The client						
		То	otal Size:100											
				<table< td=""><td>15.</td><td>Box</td><td>Label Nan</td><td>ning Rule</td><td>></td><td></td><td></td><td></td><td></td></table<>	15.	Box	Label Nan	ning Rule	>					
Digit Code	1	2	3	4	5	6	7	8	9	10	11	12	13	
	В	9	А	F	1	7	8	N	0	0	3	2	7	
Description	Produ Narr		Product Grade	B8	Ye	ear	Month	Revision	BOX Serial Number					

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	27 OF 33
B2017-Q011-O (3/3)	· · · · · ·	A4(210 X 297)

B2017-Q011-O (3/3)

A4(210 X 297)

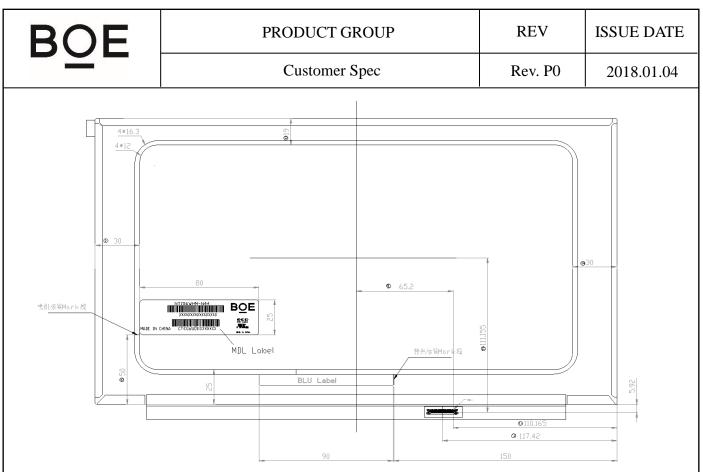


Figure 22. TFT-LCD Module Outline Dimensions (Rear view)

Note:

- 1. Top Polarizer is the highest part.
- 2. Curve Spec: 0<=d<=0.5mm.
- 3. No light leakage from all 4 corners of LCM.
- 4. Size Unit: mm.
- 5. General Tolerance: ±0.3mm.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	30 OF 33
B2017-Q011-O (3/3)		A4(210 X 297)

B	0	Ε

Customer Spec

Rev. P0

REV

2018.01.04

16.0 EDID Table

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ddress (HEX)	Function	Hex	Dec	Input values.	Notes
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,		00	0	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	01		FF	255	255	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02		FF	255	255	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	03		FF	255	255	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04	Header	FF	255	255	EDID Header
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			FF			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	06		FF	255	255	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			00	0	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ID Manufacturer Name		-	BOE	ID = BOE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ID Product Code			1902	ID = 1902
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					0	
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$				-		
OF 00 0 0 10 Week of manufacture 01 1 1 11 Year of Manufacture 18 27 2017 Manufacture in 2017 12 EDID Structure Ver. 01 1 1 1 EDID Version # 04 4 4 EDID Version # 04 4 4 EDID Rev. 0.4 13 EDID revision # 04 4 4 4 EDID Rev. 0.4 14 Video input definition 95 149 - - Total Structure Ver. 01 1 19 9 9 9 9 19 19 19 19 10		32-bit serial No.			-	
10 Week of manufacture 0.1 1 1 1 11 Year of Manufacture 18 27 2017 Manufactured in 2017 12 EDID Structure Ver. 01 1 1 EDID Rev. 0.4 13 EDID revision # 04 4 4 EDID Rev. 0.4 14 Video input definition 95 149 - - 15 Max H image size 22 34 34 34 cm (Approx) 16 Max V image size 13 19 19 19 cm (Approx) 17 Display Gamma 78 120 2.2 Gamma curve = 2.2 18 Feature support 02 2 - RGB display, Preferred Timming mode 18 Red x high bits 93 147 0.575 Red ($\chi = 1001011 (0.575)$ 16 Green x high bits 93 147 0.575 Red ($\chi = 10010011 (0.575)$ 16 Green y high bits 29 41 0.6161 Blue ($\chi = 01010001 (0.613)$						
11 Year of Manufacture 1B 27 2017 Manufactured in 2017 12 EDID Structure Ver. 01 1 1 EDID Ver 1.0 13 EDID revision # 04 4 4 EDID Ver 0.4 14 Video input definition 95 149 - - 15 Max V image size 13 19 19 19 (Approx) 16 Max V image size 13 19 19 19 (Approx) 17 Display Gamma 78 120 2.2 Gamma curve = 2.2 18 Feature support 02 2 - REd Signay, Preferred Timming mode 18 Red/Green low bits 30 48 - Blue (White low bits 10 10 Green N high bits 57 87 0.342 Red (x) = 0101011 (0.575) 11 Green x high bits 58 88 0.345 Green (x) = 0101001 (0.157) 11 Green x high bits 54 84 0.329 White (y) = 0101001		Week of manufacture		-	-	
12 EDID Structure Ver. 01 1 1 EDID ver 1.0 13 EDID revision # 04 4 4 EDID new 0.4 14 Video input definition 95 149 - 15 Max H image size 22 34 34 34 cm (Approx) 16 Max V image size 13 19 19 19 cm (Approx) 17 Display Gamma 78 120 2.2 Garma curve = 2.2 18 Feature support 02 2 - RGB display, Preferred Timming mode 19 Red/Green low bits 30 48 - Blue / White Low Bits 10 Red x high bits 93 147 0.575 Red (x) = 1001011 (0.575) 10 Green x high bits 57 87 0.342 Red (y) = 0101011 (0.342) 11 Green x high bits 58 88 0.345 Green (x) = 0101001 (0.575) 11 Green x high bits 29 41 0.61 Blue (y) = 0101001 (0.575) 12 Bits with high bits 50 80 0.313 White (x)						Manufactured in 2017
13 EDID revision # 04 4 4 EDID Rev. 0.4 14 Video input definition 95 149 - 15 Max Himage size 13 19 19 19 may time (Approx) 16 Max V image size 13 19 19 19 mage (Approx) 17 Display Gamma 78 120 2.2 Gamma curve = 2.2 18 Feature support 02 2 - RGB (siplay, Preferred Timming mode 18 Feature support 02 2 - RGB (siplay, Preferred Timming mode 18 Red/Green low bits 30 48 - Blue (White low Bits 10 Red y high bits 57 87 0.342 Red (y) = 0101011 (0.575) 11 Green x high bits 58 88 0.345 Green (y) = 10010001 (0.161) 116 Green x high bits 29 41 0.161 Blue (x) = 01010001 (0.152) 117 Blue x high bits 50 80 0.313 White (x) = 010100						
14 Video input definition 95 149 - 15 Max H image size 22 34 34 34 cm (Approx) 16 Max V image size 13 19 19 19 cm (Approx) 17 Display Gamma 78 120 2.2 Gamma curve = 2.2 18 Feature support 02 2 - RGB display, Preferred Timming mode 19 Red/Green low bits 30 448 - Blue / White Low Bits 18 Red x high bits 93 147 0.575 Red (x) = 1001011 (0.575) 10 Green x high bits 57 87 0.342 Red (y) = 0101011 (0.342) 10 Green x high bits 93 147 0.575 Green (y) = 1001001 (0.575) 11 Green x high bits 29 41 0.161 Blue (x) = 0011000 (0.345) 12 White x high bits 21 33 0.132 Blue (y) = 00100101 (0.161) 20 BLe x high bits 54 84 0.329 White (y) = 0101000 (0.329) 23 Established timing 3 00 0						
15 Max H image size 22 34 34 34 cm (Approx) 16 Max V image size 13 19 19 19 cm (Approx) 17 Display Gamma 78 120 2.2 Gamma curve = 2.2 18 Feature support 02 2 - RGB display, Preferred Timming mode 19 Red/Green low bits 24 36 - RGB display, Preferred Timming mode 18 Red vingh bits 93 147 0.575 Red (/ seen low bits 1010011 (0.575) 10 Green x high bits 57 87 0.342 Red (y) = 0101011 (0.575) 11 Green x high bits 53 147 0.575 Green (y) = 1010011 (0.575) 15 Green x high bits 50 80 0.343 Blue (y) = 0101001 (0.575) 16 Green y high bits 50 80 0.313 Blue (y) = 0101001 (0.575) 16 Green y high bits 50 80 0.313 Blue (y) = 0101001 (0.132) 21 White x high bits						EDID Rev. 0.4
16 Max V image size 13 19 19 19 (Aprox) 17 Display Gamma 78 120 2.2 Gamma curve = 2.2 18 Feature support 02 2 - Red/Green low bits 24 36 - Red/Green low Bits 1A Blue/White low bits 30 48 - Blue / White Low Bits 18 Red x high bits 53 147 0.575 Red (x) = 10010011 (0.575) 10 Green x high bits 57 87 0.342 Red (y) = 01010011 (0.575) 11 Green x high bits 53 147 0.575 Green (x) = 0010010 (0.545) 12 Green x high bits 53 147 0.575 Green (x) = 0010010 (0.545) 15 Blue x high bits 21 33 0.132 Blue (y) = 0010001 (0.161) 20 Blue y high bits 50 80 0.313 White (x) = 0101000 (0.313) 21 Standard timing 3 00 0 - - 25						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
18 Feature support 02 2 - RGB display, Preferred Timming mode 19 Red/Green low bits 24 36 - Red / Green Low Bits 1A Blue/White low bits 30 48 - Blue / White Low Bits 1A Blue/White low bits 30 48 - Blue / White Low Bits 1A Blue/White low bits 30 48 - Blue / White Low Bits 1B Red x high bits 57 87 0.342 Red (y) = 0101011 (0.575) 1C Red y high bits 58 88 0.345 Green (x) = 10010001 (0.575) 1E Green y high bits 93 147 0.575 Green (x) = 0101001 (0.575) 1F Blue x high bits 29 41 0.161 Blue (x) = 00110001 (0.575) 20 BLue y high bits 50 80 0.313 White (x) = 0010001 (0.161) 20 BLue y high bits 50 80 0.313 White (x) = 0101000 (0.313) 21 White x high bits 50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
19 Red/Green low bits 24 36 - Red / Green Low Bits 1A Blue/White low bits 30 48 - Blue / White Low Bits 18 Red x high bits 93 147 0.575 Red (x) = 10010011 (0.575) 10 Green x high bits 57 87 0.342 Red (y) = 01010011 (0.575) 10 Green x high bits 58 88 0.345 Green (y) = 0101001 (0.575) 11 Green x high bits 29 41 0.161 Blue (y) = 00101001 (0.575) 11 Blue x high bits 21 33 0.132 Blue (y) = 00100001 (0.132) 12 White x high bits 50 80 0.313 White (y) = 0101000 (0.313) 12 White x high bits 54 84 0.329 White (y) = 0101000 (0.329) 13 Established timing 1 00 0 - - 14 Established timing 2 00 0 - 15 Established timing 3 00 0 - - 16 Standard timing #1 01 1 Not Used </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1A Blue/White low bits 30 48 - Blue / White Low Bits 18 Red x high bits 93 147 0.575 Red (x) = 10010011 (0.575) 1C Red y high bits 57 87 0.342 Red (y) = 0101011 (0.575) 1C Green x high bits 58 88 0.345 Green (x) = 0101001 (0.342) 1D Green x high bits 93 147 0.575 Green (x) = 0101001 (0.345) 1E Green y high bits 93 147 0.575 Green (x) = 0010001 (0.151) 20 BLue y high bits 21 33 0.132 Blue (y) = 00100001 (0.132) 21 White x high bits 50 80 0.313 White (x) = 0101000 (0.32) 21 White y high bits 54 84 0.329 White (y) = 0101010 (0.329) 23 Established timing 1 00 0 - - 24 Established timing 3 00 0 - - 25 Standard timing #1 01 1	18	Feature support	02	2	-	RGB display, Preferred Timming mode
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	Red/Green low bits	24	36	-	Red / Green Low Bits
$ \begin{array}{ c c c c c c } \hline Red y high bits & 57 & 87 & 0.342 & Red (y) = 01010111 (0.342) \\ \hline \mbox{Green x high bits } 58 & 88 & 0.345 & \mbox{Green (x) = 1011000 (0.345)} \\ \hline \mbox{Green y high bits } 93 & 147 & 0.575 & \mbox{Green (y) = 1001011 (0.575)} \\ \hline \mbox{He x high bits } 29 & 41 & 0.161 & \mbox{Blue (y) = 00101001 (0.161)} \\ \hline \mbox{Blue y high bits } 21 & 33 & 0.132 & \mbox{Blue (y) = 0010000 (0.132)} \\ \hline \mbox{Hite x high bits } 50 & 80 & 0.313 & \mbox{White (x) = 0101000 (0.313)} \\ \hline \mbox{White x high bits } 54 & 84 & 0.329 & \mbox{White (y) = 0101000 (0.329)} \\ \hline \mbox{Hite x high bits } 54 & 84 & 0.329 & \mbox{White (y) = 0101000 (0.329)} \\ \hline \mbox{Hite x high bits } 54 & 84 & 0.329 & \mbox{White (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 1 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 2 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 3 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 3 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 3 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 3 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 3 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 41 } 01 & 1 & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 3 } 00 & 0 & - & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 42 } 01 & 1 & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 43 } 01 & 1 & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 43 } 01 & 1 & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 44 } 01 & 1 & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 45 } 01 & 1 & \mbox{Hite (y) = 0101000 (0.329)} \\ \hline \mbox{Lestabilished timing 45 } 01 & 1 & \mbox{Hite (y) = 01000 (0.320)} \\ \hline \mbox{Lestabilished timing 45 } 01 & 1 & \mbox{Hite (y) = 0100 (0.320)} \\ \hline Lestabilish$	1A	Blue/White low bits	30	48	-	
1D Green x high bits 58 88 0.345 Green (x) = 01011000 (0.345) 1E Green y high bits 93 147 0.575 Green (x) = 1001001 (0.575) 1F Blue x high bits 29 41 0.161 Blue (x) = 0010001 (0.161) 20 Blue y high bits 21 33 0.132 Blue (y) = 0010000 (0.132) 21 White x high bits 50 80 0.313 White (y) = 0101000 (0.329) 22 White y high bits 54 84 0.329 White (y) = 0101000 (0.329) 23 Established timing 1 00 0 $-$ 24 Established timing 2 00 0 $-$ 25 Established timing 3 00 0 $-$ 26 Standard timing #2 01 1 Not Used 27 Standard timing #3 01 1 Not Used 28 Standard timing #4 01 1 Not Used 29 Standard timing #4 01 1 Not Used 20 Standard timing #6 01 1	1B	Red x high bits	93	147	0.575	Red (x) = 10010011 (0.575)
IE Green y high bits 93 147 0.575 Green (y) = 10010011 (0.575) IF Blue x high bits 29 41 0.161 Blue (x) = 0010001 (0.161) 20 BLue y high bits 21 33 0.132 Blue (y) = 0010000 (0.132) 21 White x high bits 50 80 0.313 White (x) = 0101000 (0.313) 22 White y high bits 54 84 0.329 White (y) = 0101010 (0.329) 23 Established timing 1 00 0 - - 24 Established timing 2 00 0 - - 25 Established timing 3 00 0 - - 26 Standard timing #1 01 1 Not Used 27 Standard timing #3 01 1 Not Used 28 Standard timing #3 01 1 Not Used 20 Standard timing #4 01 1 Not Used 21 Standard timing #6 01 1 <	1C	Red y high bits	57	87	0.342	Red (y) = 01010111 (0.342)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1D	Green x high bits	58	88	0.345	Green (x) = 01011000 (0.345)
20 BLue y high bits 21 33 0.132 Blue (y) = 0010001 (0.132) 21 White x high bits 50 80 0.313 White (x) = 0101000 (0.313) 22 White y high bits 54 84 0.329 White (y) = 01010100 (0.329) 23 Established timing 1 00 0 - - 24 Established timing 2 00 0 - - 25 Established timing 3 00 0 - - 26 27 Standard timing #1 01 1 Not Used 28 29 Standard timing #2 01 1 1 Not Used 28 21 31 1 1 Not Used 1 1 20 Standard timing #3 01 1 1 Not Used 1 1 Not Used 21 Standard timing #4 01 1 1 Not Used 1 1 1 1 1 1 1 <td< td=""><td>1E</td><td>Green y high bits</td><td>93</td><td>147</td><td>0.575</td><td>Green (y) = 10010011 (0.575)</td></td<>	1E	Green y high bits	93	147	0.575	Green (y) = 10010011 (0.575)
21 White x high bits 50 80 0.313 White (x) = 0101000 (0.313) 22 White y high bits 54 84 0.329 White (x) = 0101000 (0.313) 23 Established timing 1 00 0 - 24 Established timing 2 00 0 - 25 Established timing 3 00 0 - 26 Standard timing #1 01 1 Not Used 27 Standard timing #2 01 1 Not Used 28 Standard timing #2 01 1 Not Used 29 Standard timing #3 01 1 Not Used 20 Standard timing #3 01 1 Not Used 20 Standard timing #4 01 1 Not Used 21 Standard timing #4 01 1 Not Used 22 Standard timing #5 01 1 Not Used 31 Standard timing #6 01 1 Not Used 32 Standard timing #7 01 1 Not Used <td< td=""><td>1F</td><td>Blue x high bits</td><td>29</td><td>41</td><td>0.161</td><td>Blue (x) = 00101001 (0.161)</td></td<>	1F	Blue x high bits	29	41	0.161	Blue (x) = 00101001 (0.161)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	BLue y high bits	21	33	0.132	Blue (y) = 00100001 (0.132)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	White x high bits	50	80	0.313	White (x) = 01010000 (0.313)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	White y high bits	54	84	0.329	· · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, e	00		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Standard timing #1				Not Used
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Standard timing #2				Not Used
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					+ +	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Standard timing #3			+	Not Used
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					+ +	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Standard timing #4			+	Not Used
2F Standard timing #5 01 1 Not Used 30 31 Standard timing #6 01 1 Not Used 31 Standard timing #6 01 1 Not Used 32 31 Standard timing #7 01 1 Not Used 34 5 tandard timing #8 01 1 Not Used					+ +	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Standard timing #5			+	Not Used
31 Standard timing #6 01 1 Not Used 32 33 Standard timing #7 01 1 Not Used 34 Standard timing #8 01 1 Not Used					+ +	
32 33 Standard timing #7 01 1 Not Used 34 Standard timing #8 01 1 Not Used		Standard timing #6			+	Not Used
33 Standard timing #7 01 1 Not Used 34 Standard timing #8 01 1 Not Used					++	
33 01 1 34 Standard timing #8 01 1		Standard timing #7				Not Used
		-			++	
35 01 1		Standard timing #8				Not Used
	35	J	01	1		
EC. NUMBER SPEC. TITLE PAG	1	NUMBER S				

NT156WHM-N44Product Specification Rev. P0B2017-Q011-O (3/3)

A4(210 X 297)

31 OF 33

R	\cap	F
	\leq	

PRODUCT GROUP

ISSUE DATE

Customer Spec

Rev. P0

2018.01.04

37 38 39 3A 3B 3C 3D 3E 40 41 42 43 44 45 46 47 48	Detailed timing/monitor descriptor #1	1D 56 E2 50 00 1E 30 30 20 36 00 58 C2 10 00 00 00 1A	29 86 226 80 0 30 48 48 48 32 54 0 88 194 16 0	1366 226 - 768 30 - 48 32 3 6 6 344 194	Hor Active = 1366 Hor Blanking = 226 4 bits of Hor. Active + 4 bits of Hor. Bla Ver Active = 768 Ver Blanking = 30 4 bits of Ver. Active + 4 bits of Ver. Bla Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line	5	
39 3A 3B 3C 3D 3E 40 41 42 43 44 45 46 47		E2 50 00 1E 30 20 36 00 58 C2 10 00 00	226 80 0 30 48 48 48 32 54 0 88 194 16	226 - 768 30 - 48 32 3 6 344	Hor Blanking = 226 4 bits of Hor. Active + 4 bits of Hor. Bla Ver Active = 768 Ver Blanking = 30 4 bits of Ver. Active + 4 bits of Ver. Bla Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line	5	
3A 3B 3C 3D 3F 40 41 42 43 44 45 46 47		50 00 1E 30 20 36 00 58 C2 10 00 00	80 0 30 48 48 32 54 0 88 194 16	- 768 30 - 48 32 3 6 344	4 bits of Hor. Active + 4 bits of Hor. Bla Ver Active = 768 Ver Blanking = 30 4 bits of Ver. Active + 4 bits of Ver. Bla Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line	5	
3B 3C 3D 3F 40 41 42 43 44 45 46 47		00 1E 30 20 36 00 58 C2 10 00 00	0 30 48 48 32 54 0 88 194 16	768 30 - 48 32 3 6 344	Ver Active = 768 Ver Blanking = 30 4 bits of Ver. Active + 4 bits of Ver. Bla Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line	5	
3C 3D 3E 7 40 41 42 43 44 45 46 47		1E 30 30 20 36 00 58 C2 10 00 00	30 48 48 32 54 0 88 194 16	30 - 48 32 3 6 344	Ver Blanking = 30 4 bits of Ver. Active + 4 bits of Ver. Bla Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line	nking	
3D 3E 3F 40 41 42 43 44 45 46 47		30 30 20 36 00 58 C2 10 00 00	48 48 32 54 0 88 194 16	- 48 32 3 6 344	4 bits of Ver. Active + 4 bits of Ver. Bla Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line	nking	
3E C 3F 40 41 41 42 43 44 45 46 47		30 20 36 00 58 C2 10 00 00	48 32 54 0 88 194 16	48 32 3 6 344	Hor Sync Offset = 48 H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line		
3F 40 41 42 43 44 45 46 47		20 36 00 58 C2 10 00 00	32 54 0 88 194 16	32 3 6 344	H Sync Pulse Width = 32 V sync Offset = 3 line V Sync Pulse width : 6 line		
40 41 42 43 44 45 46 47		36 00 58 C2 10 00 00	54 0 88 194 16	3 6 344	V sync Offset = 3 line V Sync Pulse width : 6 line		
41 42 43 44 45 46 47		00 58 C2 10 00 00	0 88 194 16	6 344	V Sync Pulse width : 6 line		
42 43 44 45 46 47		58 C2 10 00 00	88 194 16	344	· · · · · · · · · · · · · · · · · · ·		
43 44 45 46 47		C2 10 00 00	194 16		Horizontal Image Size = 344 mm (Low 8	} bits)	
44 45 46 47		10 00 00	16		Vertical Image Size = 194 mm (Low 8		
45 46 47		00 00		-	4 bits of Hor Image Size + 4 bits of Ver Im		
46 47		00	-	0	Hor Border (pixels)		
47			0	0	Vertical Border (Lines)		
		, 1A	26	-	Refer to right table		
-		CE	206		~		
49		1D	29	76.3	76.3MHz Main clock		
4A		56	86	1366	Hor Active = 1366		
4B		A9	169	937	Hor Blanking = 226		
4C		53	83	-	4 bits of Hor. Active + 4 bits of Hor. Bla	nking	
4D		00	0	768	Ver Active = 768		
4E		3C	60	60	Ver Blanking = 30		
4F		30	48	-	4 bits of Ver. Active + 4 bits of Ver. Bla	nking	
50 C	Detailed timing/monitor	30	48	48	Hor Sync Offset = 48		
51	descriptor #2	20	32	32	H Sync Pulse Width = 32		
52		36	54	3	V sync Offset = 3 line		
53		00	0	6	V Sync Pulse width : 6 line		
54		58	88	344	Horizontal Image Size = 344 mm (Low 8	3 bits)	
55		C2	194	194	Vertical Image Size = 194 mm (Low 8		
56		10	16	-	4 bits of Hor Image Size + 4 bits of Ver Im	age Size	
57		00	0	0	Hor Border (pixels)		
58		00	0	0	Vertical Border (Lines)		
59		1A	26	-			
5A		00	0				
5B		00	0				
5C		00	0				
5D		00	0				
5E		00	0				
5F		00	0				
60		00	0		_		
61		00	0		_		
	Detailed timing/monitor	00	0		Nvidia nvDPS	Lowest	
63	descriptor #3	00	0		refresh rate that does not cause any visual/optic	al side effec	
64		00	0		_		
65		00	0		_		
66		00	0		_		
67		00	0				
68		00	0				
69		00	0				
6A		00	0				
6B		00	0				
PEC. NU	UMBER S	SPEC. TIT	ĽE			PAGE	
	1-O (3/3)	NT	156WHM-N4	4 Product S	pecification Kev. FU	32 OF 3 4(210 X	

BOE		PRODUCT	REV	ISSUE DATE	
		Custome	Rev. P0	2018.01.04	
60	00	0	r i i i i i i i i i i i i i i i i i i i	Octailed Timing Deccrir	ation #4

6C		00	0		Detailed Timing Description #4
6D		00	0		Flag
6E		00	0		Reserved
6F		02	2		For Brightness Table and Power consumption
70		00	0		Flag
71		11	17	-	PWM % [7:0] @ Step 0
72		3F	63	-	PWM % [7:0] @ Step 5
73		EA	234	-	PWM % [7:0] @ Step 10
74	Detailed	0B	11	-	Nits [7:0] @ Step 0
75	timing/monitor	3C	60	-	Nits [7:0] @ Step 5
76	descriptor #4	6E	110	-	Nits [7:0] @ Step 10
77		0D	13		Panel Electronics Power @32x32 Chess
			15	-	Pattern=550mW
78		0E	14	-	Backlight Power @60 nits=580mW
79		19	25	-	Backlight Power @Step 10=2000mW
7A		6E	110	-	Nits @ 100% PWM Duty =220nit
7B		00	0		Flags
7C		00	0		Flags
7D		00	0		Flags
7E	Extension flag	00	0	1	
7F	Checksum	86	134	-	

SPEC. NUMBER	SPEC. TITLE	PAGE
	NT156WHM-N44 Product Specification Rev. P0	33 OF 33
B2017-0011-0 (3/3)		A4(210 X 297)